martes, 7 de abril de 2015

CONCEPTO DE FUNCIONES TRIGONOMETRICAS

En matemáticas, las funciones trigonométricas son las funciones establecidas con el fin de extender la definición de las razones trigonométricas a todos los números reales y complejos.

Las funciones trigonométricas se definen comúnmente como el cociente entre dos lados de un triángulo rectánguloasociado a sus ángulos. Las funciones trigonométricas son funciones cuyos valores son extensiones del concepto de razón trigonométrica en un triángulo rectángulo trazado en una circunferencia unitaria (de radio unidad). Definiciones más modernas las describen como series infinitas o como la solución de ciertas ecuaciones diferenciales, permitiendo su extensión a valores positivos y negativos, e incluso a números complejos.

Grupo de funciones que relacionan un ángulo agudo en un triángulo rectángulo con las relaciones de los lados. Son el seno, coseno, tangente, cotangente, secante y cosecante.

CONCEPTO DE DE LOS ÁNGULOS DE ELEVACIÓN Y DE DEPRESION









PROBLEMAS DE APLICACIÓN DE LAS RAZONES TRIGONOMÉTRICAS Y DE ÁNGULOS DE DEPRESIÓN Y DE ELEVACION

. El extremo superior de una escalera esta apoyada en una pared de forma que alcanza una altura de 3m. Si forma un ángulo 51º con el suelo, ¿Cuál es el largo de la escalera?


2. Un observador se encuentra en un faro al pie de un acantilado. Esta a 687m sobre el nivel del mar, desde este punto observa un barco con un ángulo depresión de 23º. Se desea saber a que distancia de la base del acantilado se encuentra el barco.

Un observador tiene un nivel visual de 1.40 m de altura, y se encuentra a 65 m de un árbol. Al ver la punta del árbol, su vista forma un ángulo de elevación de 24°. ¿Cuál es la altura del árbol?

Un observador sobre un edificio tiene un nivel visual de 1.50 m de altura. Al ver un automóvil estacionado, el ángulo de depresión de su vista es de 52°. Si la base del edificio se encuentra a 70 m del automóvil, ¿cuál es la altura del edificio?







Dos personas A y B separadas por "a" metros observan el campanario de una iglesia, como lo muestra la figura de abajo. A observa con un ángulo de elevación del 60º y B lo observa con un ángulo de elevación de 45º. ¿Cuál es la altura del campanario?







CONCEPTO DE LAS RAZONES TRIGONOMETRICAS

Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triangulo rectangulo asociado a sus ángulos. 
Existen seis funciones trigonométricas básicas.

Para definir las razones trigonométricas del ángulo: α, del vértice A, se parte de un triángulo rectángulo arbitrario que contiene a este ángulo. El nombre de los lados de este triángulo rectángulo que se usará en los sucesivo será:
  • La hipotenusa (h) es el lado opuesto al ángulo recto, o lado de mayor longitud del triángulo rectángulo.
  • El cateto opuesto (a) es el lado opuesto al ángulo que queremos determinar.
  • El cateto adyacente (b) es el lado adyacente al ángulo del que queremos determinar.
Todos los triángulos considerados se encuentran en el Plano Euclidiano, por lo que la suma de sus ángulos internos es igual a π radianes (o 180°). En consecuencia, en cualquier triángulo rectángulo los ángulos no rectos se encuentran entre 0 y π/2 radianes. Las definiciones que se dan a continuación definen estrictamente las funciones trigonométricas para angulos de este rango
triang2.png
1) El seno de un ángulo es la relación entre la longitud del cateto opuesto y la longitud de la hipotenusa:
sen.png
El valor de esta relación no depende del tamaño del triángulo rectángulo que elijamos, siempre que tenga el mismo ángulo α , en cuyo caso se trata de triángulos semejantes.

2) El coseno de un ángulo la relación entre la longitud del cateto adyacente y la longitud de la hipotenusa:
cos.png
3) La tangente de un es la relación entre la longitud del cateto opuesto y la del adyacente:
tan.png
4) La cotangente de un ángulo es la relación entre la longitud del cateto adyacente y la del opuesto:
cot.png
5) La secante de un ángulo es la relación entre la longitud de la hipotenusa y la longitud del cateto adyacente:
sec.png
6) La cosecante de un ángulo es la relación entre la longitud de la hipotenusa y la longitud del cateto opuesto:

csc.png

REPRESENTACIÓN GRÁFICA DE LAS FUNCIONES TRIGONOMETRICAS


Representación gráfica de una función periódica
En la vida diaria existen muchos casos de funciones periódicas cuando la variable es el tiempo; situaciones como el movimiento de las manecillas de un reloj o las fases de la luna muestran un comportamiento periódico. Un movimiento periódico es aquel en el que la posición(es) del sistema se pueden expresar en base a funciones periódicas, todas con el mismo período.

Para una función aplicada al conjunto de los números reales o al de los enteros, significa que la totalidad de su gráfica puede ser representada a partir de copias de una determinada porción de ésta, repetida a intervalos regulares.
Las funciones trigonométricas seno, coseno típicos de funciones periódicas, cuyo período es 360 grados. En el caso de la tangente, vemos que su periodo es menor, siendo 180 grados.

Las gráficas de las funciones trigonométricas  poseen propiedades matemáticas muy interesantes como máximo, mínimo, asíntotas verticales, alcance y periodo entre otras.
Es necesario estudiar la forma de la gráfica de cada función trigonométrica. Esta forma está asociada a las características particulares de cada función. En la figura de abajo se presentan algunas gráficas de funciones trigonométricas.

Graficas Trigonometricas
     Al establecer relaciones entre dos conjuntos mediante las funciones trigonométricas se establecen relaciones como y=sen(x), y=cos(x), y=tan(x), y=cot(x), y=csc(x) o y=sec(x). La expresión en el paréntesis se denomina argumento de la función (dominio) mientras que yrepresenta el alcance (imágenes).
     Las gráficas de estas funciones se extienden sobre los ejes coordenados, si es sobre el eje de x, tienen la característica de repetirse por intervalos. Esto significa que cada cierta cantidad de radianes, una parte de la gráfica de la función es la misma (periodo). La extensión sobre el eje de y se conoce como alcance. Veamos cada función particular en detalle.
     El modelo de las gráficas de las funciones trigonométricas se obtiene evaluando la función para ángulos que forman una revolución completa.
Gráfica de la Función Seno del ángulo
El modelo de la gráfica de la función seno del ángulo se puede obtener transfiriendo puntos del círculo unitario al sistema rectangular de coordenadas. Recuerde que la función seno del ángulo utiliza la y de los arcos del círculo unitario. El ciclo fundamental de la función seno del ángulo comienza en 0 y termina en2π. En la figura de abajo se observa la relación entre la circunferencia unitaria y la gráfica de la función seno del ángulo x. Esta figura muestra el desarrollo de la gráfica de la función seno del ángulo x a partir de la circunferencia unitaria.
Grafica funcion Seno

Esta función tiene un punto máximo y un punto mínimo en el ciclo fundamental de su gráfica. Veamos las características de la gráfica de la función y=sen(x).
Su dominio es el conjunto de números reales
Su alcance es el conjunto de números mayores o iguales que menos uno hasta los números menores o iguales que uno.
Su intercepto en el eje de y es el punto (0,0).
El eje de x será el eje de referencia.
El punto máximo del ciclo fundamental tiene coordenadas (π/2,1).
El punto mínimo del ciclo fundamental tiene coordenadas (3π/2,-1).
Su periodo es 2π.


Gráfica de la Función Coseno del ángulo
El modelo de la gráfica de la función coseno del ángulo se puede obtener transfiriendo puntos del círculo unitario al sistema rectangular de coordenadas. Recuerde que la función coseno del ángulo utiliza la x de los arcos del círculo unitario. El ciclo fundamental de la función coseno del ángulo comienza en 0 y termina en 2π. En la figura de abajo se observa la relación entre la circunferencia unitaria y la gráfica de la función coseno del ángulo x. Esta figura muestra el desarrollo de la gráfica de la función coseno del ángulo x a partir de la circunferencia unitaria.
Grafica Funcion Coseno

Esta función tiene un punto máximo y un punto mínimo en el ciclo fundamental de su gráfica. Veamos las características de la gráfica de la función y=cos(x).
Su dominio es el conjunto de números reales
Su alcance es el conjunto de números mayores o iguales que menos uno hasta los números menores o iguales que uno.
Su intercepto en el eje de y es el punto (0,1).
El eje de x será el eje de referencia.
El punto máximo del ciclo fundamental tiene coordenadas (0,1) y (2π,1).
El punto mínimo del ciclo fundamental tiene coordenadas (π,-1).
Su periodo es 2π.

Gráfica de la Función Tangente del ángulo
Grafica Funcion Tangente

El modelo de la gráfica de la función tangente del ángulo se puede obtener transfiriendo puntos del círculo unitario al sistema rectangular de coordenadas. Recuerde que la función tangente del ángulo es el cociente de la y y  la x de los arcos del círculo unitario. El ciclo fundamental de la función tangente del ángulo comienza en -π/2 y termina en π/2. En la figura de la derecha se observa la relación entre la circunferencia unitaria y la gráfica de la función tangente del ángulo x. Esta figura muestra el desarrollo de la  gráfica de la función tangente del ángulo x a partir de la circunferencia unitaria.


Esta función tiene asíntotas en el ciclo fundamental de su gráfica. Veamos las características de la gráfica de esta función.
Su dominio es toda xπ/2±nπ.
Su alcance es el conjunto de todos los números reales.
Su intercepto en el eje de y es el punto (0,0).
El eje de x será el eje de referencia.
Las asíntotas del ciclo fundamental son x=±π/2.
Su periodo es π.


 
Gráfica de la Función Cotangente del ángulo
Gráfica Funcion Cotangente

El modelo de la gráfica de la función cotangente del ángulo se puede obtener transfiriendo puntos del círculo unitario al sistema rectangular de coordenadas. Recuerde que la función cotangente del ángulo es el cociente de la x y la y de los arcos del círculo unitario. El ciclo fundamental de la función cotangente del ángulo comienza en 0 y termina en π. En la figura de la derecha se observa la relación entre la circunferencia unitaria y la gráfica de la función cotangente del ángulo x.Esta figura muestra el desarrollo de la gráfica de la función cotangente del ángulo x a partir de la circunferencia unitaria.


Esta función tiene asíntotas en el ciclo fundamental de su gráfica. Veamos las características de la gráfica de esta función.
Su dominio es toda x±nπ.
Su alcance es el conjunto de todos los números reales.
No tiene intercepto en el eje de y.
El eje de x será el eje de referencia.
Las asíntotas del ciclo fundamental son x=±nπ.
Su periodo es π.


 
Gráfica de la Función Secante del ángulo
Grafica Funcion Secante

El modelo de la gráfica de la función secante del ángulo se puede obtener transfiriendo puntos del círculo unitario al sistema rectangular de coordenadas o buscando los recíprocos de la funcion coseno. Recuerde que la función secante del ángulo es el recíproco de la x de los arcos del círculo unitario. El ciclo fundamental de la función secante del ángulo comienza en -π/2 y termina en 3π/2. En la figura de la derecha se observa la relación entre la funcion coseno y la gráfica de la función secante del ángulo x. Esta figura muestra el desarrollo de la gráfica de la función secante del ángulo x a partir de la grafica de la función coseno del ángulo.

Esta función tiene un punto máximo y un punto mínimo en el ciclo fundamental de su gráfica. Tambien tiene tres asíntotas verticales en su ciclo fundamental. Veamos las características de la gráfica de la función y=sec(x).
Su dominio es el conjunto de números reales excepto los multiplos impares de π/2.
Su alcance es el conjunto de todos los números menores o iguales que menos uno y todos los números mayores o iguales que uno.
Su intercepto en el eje de y es el punto (0,1).
El eje de x será el eje de referencia.
El punto máximo del ciclo fundamental tiene coordenadas (π,-1).
El punto mínimo del ciclo fundamental tiene coordenadas (0, 1).
Las asíntotas del ciclo fundamental son las ecuaciones x=-π/2, x=π/2 y x=3π/2.
Su periodo es 2π.


 
Gráfica de la Función Cosecante del ángulo
Grafica Funcion Cosecante

El modelo de la gráfica de la función cosecante del ángulo se puede obtener transfiriendo puntos del círculo unitario al sistema rectangular de coordenadas o buscando los recíprocos de la funcion seno. Recuerde que la función cosecante del ángulo es el recíproco de la y de los arcos del círculo unitario. El ciclo fundamental de la función cosecante del ángulo comienza en 0 y termina en 2π. En la figura de la derecha se observa la relación entre la funcion seno y la gráfica de la función cosecante del ángulo x. Esta figura muestra el desarrollo de la gráfica de la función cosecante del ángulo x a partir de la grafica de la función seno del ángulo.

     Esta función tiene un punto máximo y un punto mínimo en el ciclo fundamental de su gráfica. Tambien tiene tres asíntotas verticales en su ciclo fundamental. Veamos las características de la gráfica de la función y=csc(x).
Su dominio es el conjunto de números reales excepto los multiplos impares de π/2.
Su alcance es el conjunto de todos los números menores o iguales que menos uno y todos los números mayores o iguales que uno.
Su intercepto en el eje de y es el punto (0,1).
El eje de x será el eje de referencia.
El punto máximo del ciclo fundamental tiene coordenadas (π,-1).
El punto mínimo del ciclo fundamental tiene coordenadas (0, 1).
Las asíntotas del ciclo fundamental son las ecuaciones x=-π/2, x=π/2 y x=3π/2.
Su periodo es 2π.

PROBLEMAS DE APLICACIÓN DE LAS FUNCIONES TRIGONOMETRICAS

Problemas de aplicacion de razones trigonométricas










LA FORMA DE DETERMINAR IDENTIDADES TRIGONOMETRICAS

Las identidades trigonométricas son igualdades que involucran funciones trigonométricas. Estas identidades son siempre útiles para cuando necesitamos simplificar expresiones que tienen incluidas funciones trigonométricas, cualesquiera que sean los valores que se asignen a los ángulos para los cuales están definidas estas razones.Las identidades trigonométricas nos permiten plantear una misma expresión de diferentes formas. Para simplificar expresiones algebraicas, usamos la factorización, denominadores comunes, etc. Pero para simplificar expresiones trigonométricas utilizaremos estas técnicas en conjunto con las identidades trigonométricas.


Antes de comenzar a ver las diferentes identidades trigonométricas, debemos conocer algunos términos que usaremos bastante en trigonometría, que son las tres funciones más importantes dentro de esta. El coseno de un ángulo en un triángulo rectángulo se define como la razón entre el cateto adyacente y la hipotenusa:

Otra función que utilizaremos en trigonometría es “seno”. Definiremos seno como la razón entre el cateto opuesto y la hipotenusa en un triángulo rectángulo:

Mientras tanto la palabra tangente en matemática puede que tenga dos significados distintos. En geometría se utiliza el término de recta tangente, pero a nosotros en trigonometría nos interesa otro término que es el de tangente de un ángulo, el cual es la relación entre los catetos de un triángulo rectángulo , lo mimo que decir que es el valor numérico que resulta de dividir la longitud del cateto opuesto entre la del cateto adyacente al ángulo.

Las siguientes identidades se cumplen para cualquier ángulo en el cual el denominador no sea cero. Estas son identidades recíprocas:

A partir de las relaciones pitagóricas es posible encontrar otras identidades y demostrar algunas identidades trigonométricas. Mediante estas relaciones si conocemos las medidas de los catetos de un triángulo rectángulo podemos calcular la medida de la hipotenusa (lado opuesto al ángulo recto) y si conocemos la medida de la hipotenusa y la de un cateto podemos calcular la medida del otro cateto. Entonces diremos que el teorema de Pitágoras es un teorema que se aplica únicamente a triángulos rectángulos, y nos sirve para obtener un lado o la hipotenusa de un triángulo, si es que se conocen los otros dos. Las identidades de relaciones pitagóricas son las siguientes:
De acuerdo al teorema de pitágoras :
Ahora veremos algunos ejemplos. Como primer ejemplo verificaremos la siguiente identidad:
Obtendremos la solución utilizando las identidades recíprocas:
Observemos también el siguiente ejemplo, en el cual verificaremos otra identidad:
Su solución :
Otra de las identidades trigonométricas sería la de división:
Las siguientes identidades serían las de suma y diferencia de dos ángulos:
Tenemos también las identidades de suma y diferencia del seno y coseno de dos ángulos, aquí las tenemos:
Identidad trigonométrica de producto del seno y el coseno de dos ángulos:
Identidades trigonométricas de ángulo doble:
Identidades trigonométricas de mitad de ángulo:
Por último observaremos algunas otras identidades trigonométricas :